首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   44篇
  2023年   2篇
  2022年   5篇
  2021年   19篇
  2020年   12篇
  2019年   13篇
  2018年   10篇
  2017年   26篇
  2016年   23篇
  2015年   30篇
  2014年   35篇
  2013年   48篇
  2012年   67篇
  2011年   63篇
  2010年   38篇
  2009年   33篇
  2008年   50篇
  2007年   37篇
  2006年   46篇
  2005年   36篇
  2004年   24篇
  2003年   28篇
  2002年   28篇
  2001年   15篇
  2000年   19篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1995年   6篇
  1994年   2篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1979年   6篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1964年   1篇
排序方式: 共有798条查询结果,搜索用时 31 毫秒
51.
To assess the functional importance of the J-helix region of Escherichia coli DNA polymerase I, we performed site-directed mutagenesis of the following five residues: Asn-675, Gln-677, Asn-678, Ile-679, and Pro-680. Of these, the Q677A mutant is polymerase-defective with no change in its exonuclease activity. In contrast, the N678A mutant has unchanged polymerase activity but shows increased mismatch-directed exonuclease activity. Interestingly, mutation of Pro-680 has a Q677A-like effect on polymerase activity and an N678A-like effect on the exonuclease activity. Mutation of Pro-680 to Gly or Gln results in a 10-30-fold reduction in k(cat) on homo- and heteropolymeric template-primers, with no significant change in relative DNA binding affinity or K(m)((dNTP)). The mutants P680G and P680Q also showed a nearly complete loss in the processive mode of DNA synthesis. Since the side chain of proline is generally non-reactive, mutation of Pro-680 may be expected to alter the physical form of the J-helix itself. The biochemical properties of P680G/P680Q together with the structural observation that J-helix assumes helical or coiled secondary structure in the polymerase or exonuclease mode-bound DNA complexes suggest that the structural alteration in the J-helix region may be responsible for the controlled shuttling of DNA between the polymerase and the exonuclease sites.  相似文献   
52.
53.
Alterations in the concentration of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase I, have been linked to the regulation of fatty acid oxidation in skeletal muscle. During contraction decreases in muscle malonyl-CoA concentration have been related to activation of AMP-activated protein kinase (AMPK), which phosphorylates and inhibits acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in malonyl-CoA formation. We report here that the activity of malonyl-CoA decarboxylase (MCD) is increased in contracting muscle. Using either immunopurified enzyme or enzyme partially purified by (NH(4))(2)SO(4) precipitation, 2-3-fold increases in the V(max) of MCD and a 40% decrease in its K(m) for malonyl-CoA (190 versus 119 micrometer) were observed in rat gastrocnemius muscle after 5 min of contraction, induced by electrical stimulation of the sciatic nerve. The increase in MCD activity was markedly diminished when immunopurified enzyme was treated with protein phosphatase 2A or when phosphatase inhibitors were omitted from the homogenizing solution and assay mixture. Incubation of extensor digitorum longus muscle for 1 h with 2 mm 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, a cell-permeable activator of AMPK, increased MCD activity 2-fold. Here, too, addition of protein phosphatase 2A to the immunopellets reversed the increase of MCD activity. The results strongly suggest that activation of AMPK during muscle contraction leads to phosphorylation of MCD and an increase in its activity. They also suggest a dual control of malonyl-CoA concentration by ACC and MCD, via AMPK, during exercise.  相似文献   
54.
55.
Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO) into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG) motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1’s glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.  相似文献   
56.

Background

In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes.

Results

Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3±0.66)×107 cells per gram of liver tissue with a viability of 82.3±3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies.

Conclusion

We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active hepatocytes for studying gene expression, regulation, hepatic genomics and proteomics in farm animals.  相似文献   
57.

Background

Coronary Artery Disease (CAD) is clearly a multifactorial disease that develops from childhood and ultimately leads to death. Several reports revealed having a First Degree Relatives (FDRS) with premature CAD is a significant autonomous risk factor for CAD development. C - reactive protein (CRP) is a member of the pentraxin family and is the most widely studied proinflammatory biomarker. IL-18 is a pleiotrophic and proinflammatory cytokine which is produced mainly by macrophages and plays an important role in the inflammatory cascade.

Methods and Results

Hs-CRP levels were estimated by ELISA and Genotyping of IL-18 gene variant located on promoter -137 (G/C) by Allele specific PCR in blood samples of 300 CAD patients and 300 controls and 100 FDRS. Promoter Binding sites and Protein interacting partners were identified by Alibaba 2.1 and Genemania online tools respectively. Hs-CRP levels were significantly high in CAD patients followed by FDRS when compared to controls. In IL-18 -137 (G/C) polymorphism homozygous GG is significantly associated with occurrence of CAD and Hs-CRP levels were significantly higher in GG genotype subjects when compared to GC and CC. IL-18 was found to be interacting with 100 protein interactants.

Conclusion

Our results indicate that Hs-CRP levels and IL-18-137(G/C) polymorphism may help to identify risk of future events of CAD in asymptomatic healthy FDRS.  相似文献   
58.
Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence, and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172‐SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N‐terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS‐Rosetta modeling confirm that the highly conserved N‐terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 525–535, 2014.  相似文献   
59.
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.  相似文献   
60.
Prostate apoptosis response factor‐4 (Par‐4) is a pro‐apoptotic and tumor‐suppressive protein. A highly conserved heptad repeat sequence at the Par‐4 C‐terminus suggests the presence of a leucine zipper (LZ). This C‐terminal region is essential for Par‐4 self‐association and interaction with various effector proteins. We have used nuclear magnetic resonance (NMR) spectroscopy to fully assign the chemical shift resonances of a peptide comprising the LZ domain of Par‐4 at neutral pH. Further, we have investigated the properties of the Par‐4 LZ domain and two point mutants under a variety of conditions using NMR, circular dichroism (CD), light scattering, and bioinformatics. Results indicate an environment‐dependent conformational equilibrium between a partially ordered monomer (POM) and a predominantly coiled coil dimer (CCD). The combination of techniques used allows the time scales of the equilibrium to be probed and also helps to identify features of the amino acid sequence that may influence the equilibrium. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号